Products of diagonalizable matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Diagonalizable Matrices: An Algorithm

Let T be a linear opeartor and D be a matrix. So by its diagonal matrix, we get a lot of informations about T , namely we can almost answer any question about T . In this paper we introduce an efficient algorithm that characterizes whether a given matrix is diagonalizable in the field F or not (where F is the real field R or the complex field C). Mathematics Subject Classification: 11C08, 65F30...

متن کامل

Ela Perturbations of Functions of Diagonalizable Matrices

Let f be a scalar function defined on σ(A) ∪ σ(Ã). The aim of this paper is to establish inequalities for the norm of f(A) − f(Ã). The literature on perturbations of matrix valued functions is very rich but mainly, perturbations of matrix functions of a complex argument and matrix functions of Hermitian matrices were considered, cf. [1, 11, 13, 14, 16, 18]. The matrix valued functions of a non-...

متن کامل

Almost-commuting matrices are almost jointly diagonalizable

We study the relation between approximate joint diagonalization of self-adjoint matrices and the norm of their commutator, and show that almost commuting self-adjoint matrices are almost jointly diagonalizable by a unitary matrix.

متن کامل

Rank complement of diagonalizable matrices using polynomial functions

This report defines the rank complement of a diagonalizable matrix (i.e. a matrix which can be brought to a diagonal form by means of a change of basis) as the interchange of the range and the null space. Given a diagonalizable matrix A there is in general no unique matrix Ac which has a range equal to the null space of A and a null space equal to the range of A, only matrices of full rank have...

متن کامل

Convergence of iterated Aluthge transform sequence for diagonalizable matrices

Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then, the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. We prove that the sequence {∆n(T )}n∈N converges for every r× r diagonalizable matrix T . We show that the limit ∆∞(·) is a map of class C∞...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(97)00344-3